
1. Packet Format
The packet should be a binary blob, no encoding is necessary. The reason that encoding should be removed is

that it results in a packet substantially larger than is necessary which in some operating systems results in

dropped sections of packets.

We have found from various tests that we can reliably receive 31 bytes on most systems. The previous packet

was 54 bytes, we lost half of most packets on some systems. This is not app related, several other users who

have developed their own BLE implementations have confirmed this.

Therefore, we propose to make a shorter packet, to improve reception reliability on most systems.

The packet below is 19 bytes, which is substantially shorter than the previous format.

The actual data format is identical, except for the way serial number is formatted.

Each digit 0 – 9 of the serial number is stored separately.

An example of how to send the data can be seen on the next page.

Apart from encoding all the fields are identical to the implementation prior to this change.

The inactive sections (See page 4) of the packet should also be dropped.

C Struct Byte # b7 b6 b5 b4 b3 b2 b1 b0

Start 0

1

2

3

4

MainMode 5 MODE 0

MainRange 6 RANGE OFL +/- °C ℉

7 Value_H

8 Value_L

SubMode 9 MODE

SubRange 10 RANGE OFL +/- k Hz 0

11 Value_H

12 Value_L

BarStatus 13 STATUS 0 0 0 USE 0~150 +/-

BarValue 14 VALUE 0 0 0

IconStatus115 STATUS1 °C 1KHz 1ms AUTO APO BAT

IconStatus216 STATUS2 ℉ BT ↙ REL dBm

IconStatus317 STATUS3 0 TEST AC DC

Checksum 18

Value (Bit 17, Bit 16)

Checksum XOR of bytes 0 ... 17

Serial B1

Serial B0

BAR LCD
1000 / 500

BAR GRAPH 0 ~ 25

ICON LCD

DC + AC

MIN/MAX

MEM A-HOLD

MAIN

LCD

0 ~ 24 (0x00 ~ 0x18)

RANGE (0 ~ 6)

High Byte

Low Byte

SUB LCD

100 ~ 199, 0 ~ 24

Point(0 ~ 4)

High Byte

Low Byte

MainValue

SubValue

Serial

Bits

Serial Number Digit 3 Serial Number Digit 2

Serial Number Digit 1 Serial Number Digit 0

Start COMMAND

Serial B3

Serial B2

Year (4 … 0)

Month (1 … 0) Serial Number Digit 4

0xF2

2. Packet Data Structure
union Packet
{
 struct
 {
 u8 Start;

 // Serial Bytes (all 4)
 u32 Serial;

 //Main Bytes
 u8 MainMode,
 MainRange;
 u16 MainValue;

 //Sub Bytes
 u8 SubMode,
 SubRange;
 u16 SubValue;

 //Bargraph
 u8 BarStatus,
 BarValue;

 //Icons
 u8 IconStatus1,
 IconStatus2,
 IconStatus3;

 //XOR Bitwise checksum
 u8 Checksum;
 };
 u8 Bytes[19u];
};
void BLESendBytes(u8 * const pBytes, u16 const pCount)
{
 //Put your code here to send x bytes...
}
void SendPacket(Packet * const pInput)
{
 constexpr u8 bytes = 19u;
 u8 checksum = 0u;

 for (unsigned i = 0u; i < bytes; ++i)
 checksum ^= pInput->Bytes[i];

 pInput->Checksum = checksum;
 BLESendBytes(pInput->Bytes, bytes);
}

3. Usage Example

//To use it....
Packet data;

//Same format of the bytes as before except not
// Output as a binary blob not serial
data.Start = 0xf2;
data.Serial = 0xffff;

//Main LCD section
data.MainMode = 0x12;
data.MainRange = 0x12;
data.MainValue = 1234;

//Sub LCD section
data.SubMode = 0x12;
data.SubRange = 0x12;
data.SubValue = 1234;

//Bargraph LCD section
data.BarStatus = 0x12;
data.BarValue = 12;

//Icon LCD section
data.IconStatus1 = 0x12;
data.IconStatus2 = 0x12;
data.IconStatus3 = 0x12;

//Checksum is calculated in send function
SendPacket(&data);

